Nitroxide-mediated copolymerization of styrene and pentafluorostyrene initiated by polymeric linoleic acid

Abdulkadir Alli¹, Sema Alli¹, C.Remzi Becer² and Baki Hazer³

¹ Department of Chemistry, Düzce University, Düzce, Turkey
² School of Engineering and Materials Science, Queen Mary University of London, London, UK
³ Department of Chemistry, Bülent Ecevit University, Zonguldak, Turkey

Polymeric linoleic acid graft copolymers were synthesized via a nitroxide-mediated radical polymerization (NMRP) method in the presence of 2,2-6,6-tetramethylpiperidinyl-1-oxy (TEMPO). For this purpose, PLina-ox was exposed to polymerization with styrene (Sty) or Sty and pentafluorostyrene (F5Sty) in the presence of TEMPO by NMRP method in order to obtain PLina-g-PSty and PLina-g-PF5Sty-g-PSty graft copolymers with controlled structure and low polydispersity. Chain extension study was evaluated. Principal parameters, such as monomer concentration, initiator concentration, and polymerization time, which effect the polymerization reactions, were evaluated. The products thus obtained were well characterized by ¹H NMR, GPC, and ¹⁹F NMR measurements.

Practical application: We report for the first time the synthesis of PLina-g-PSty and PLina-g-PSty-g-PF5Sty graft copolymers in the presence of TEMPO. NMRP reactions were performed in the presence of TEMPO in order to obtain graft copolymers with controlled molecular weight and polydispersity. Chain-extension reactions were also successfully carried out because of the activation of TEMPO terminated chain ends of graft copolymers. Pure linoleic acid was auto-oxidized under daylight and air oxygen, yielding peroxidized PLina (PLina-ox). PLina-ox has been used in the polymerization of styrene (Sty) or copolymerization of Sty and pentafluorostyrene (F5Sty).

Keywords: Autoxidation / Linoleic acid / Nitroxide-mediated radical polymerization / Pentafluorostyrene

Received: March 12, 2015 / Revised: April 10, 2015 / Accepted: April 17, 2015
DOI: 10.1002/ejlt.201500129

1 Introduction

Nitroxide-mediated radical polymerization (NMRP) [1, 2] is one of the most attractive controlled radical polymerization techniques such as single-electron transfer-mediated living radical polymerization (SET-LRP) [5, 6], reversible addition–fragmentation chain transfer polymerization (RAFT) [7–10], and atom transfer radical polymerization (ATRP) [11–14]. In the last two decades, these techniques have been widely used to synthesize polymers with controlled topologies and very low polydispersity indices (PDI). In particular, NMRP has several advantages over SET-LRP, ATRP, and RAFT polymerization with the most important one being that NMRP does not require the use of metal salts or sulfur compounds [15]. Therefore, there is no extensive purification step required and the obtained well defined polymers can be used in biological applications [16].

NMRP can be carried out simply by using a free radical initiator and a stable free nitroxide. Firstly, initiation takes place rapidly when the reaction is conducted at temperatures higher than 90°C. Thus, all polymer chains would be initiated simultaneously at the early stages of the polymerization. Secondly, the initiated polymer chains are reversibly capped by a stable-free radical, such as 2,2-6,6-tetramethylpiperidinyl-1-oxy (TEMPO), to provide a dormant living polymer. Reversible activation deactivation of the chain end provides control over the polymerization of monomers, such as styrene [17].

To synthesize oil-based polymers, one of the most general route is auto-oxidation of polyunsaturated oil/oily acids.
Hydroperoxidation, peroxidation, epoxidation, and per-epoxidation reactions were performed under ambient conditions in the presence of oxygen and daylight. Using this method, polyunsaturated oil/oil acids are utilized to obtain macroperoxy initiators and graft copolymers were obtained via free radical polymerization [18–23]. We have previously reported several studies to obtain styrene graft copolymers using polymeric linoleic acid. Çakmakli et al. reported polymeric linoleic acid (PLina) initiated free radical polymerization of styrene to obtain PLina-g-PSty graft copolymers [24]. These copolymers contain different polymeric oily acid initiators and they have investigated the relationship between the polymer structures and dynamic mechanical properties [25]. Alli et al. reported one-pot synthesis of poly [(linoleic acid)-g-(styrene)-g-(e-caprolactone)] graft copolymers by ring opening polymerization and free-radical polymerization in one pot [26]. These copolymers have been investigated regarding their enzymatic degradation properties in the presence of Pseudomonas lipase [27].

NMRP has not been widely utilized in connection with polymeric fatty oil copolymerizations. To date, there are only a couple of reports describing the styrenation of air-blown linseed oil [28] and styrenation of triglyceride oil [29]. To the best of our knowledge, there are no reports on the comparison of free radical polymerization and NMRP on best of our knowledge, there are no reports on the comparison of free radical polymerization and NMRP on linseed oil [28] and styrenation of triglyceride oil [29]. To the best of our knowledge, there are no reports on the comparison of free radical polymerization and NMRP on linseed oil [28] and styrenation of triglyceride oil [29]. To the best of our knowledge, there are no reports on the comparison of free radical polymerization and NMRP on linseed oil [28] and styrenation of triglyceride oil [29]. To the best of our knowledge, there are no reports on the comparison of free radical polymerization and NMRP on linseed oil [28] and styrenation of triglyceride oil [29]. To the best of our knowledge, there are no reports on the comparison of free radical polymerization and NMRP on linseed oil [28] and styrenation of triglyceride oil [29]. To the best of our knowledge, there are no reports on the comparison of free radical polymerization and NMRP on linseed oil [28] and styrenation of triglyceride oil [29]. To the best of our knowledge, there are no reports on the comparison of free radical polymerization and NMRP on linseed oil [28] and styrenation of triglyceride oil [29].

Linoleic acid thickness in Petri dish (ca. 2.0 mm) and the time of exposition of the oil layer to air oxygen were the variances of the autoxidation procedure. 10.0 g of linoleic acid spread out in a Petri dish (ϕ = 5 cm) was exposed to daylight in the air at room temperature. A pale-yellow viscous liquid polymeric linoleic acid peroxide was obtained after 2 months autoxidation. Autoxidation of linoleic acid was stopped when it was transferred into the bottle with a lid to keep at room temperature. The 1H NMR spectrum of PLina-ox contained characteristic peaks of the related groups: (δ, ppm): 5.6–6.3 ppm (the vinyl protons of the fatty acid macroperoxides), 2.3 ppm (–CH2–COOH of fatty acid macroperoxide). Peroxide analysis of the PLina-ox fraction was carried out by a reflux of a mixture of 2-propanol (50 mL)/acetic acid (10 mL)/saturated aqueous solution of KI (1 mL) and 0.1 g of PLina-ox for 10 min and titrating the released iodine against thiosulfate solution, according to a literature procedure [31]. The peroxygen content of the PLina-ox sample was found to be approximately 0.9.

2.2 Instrumentation

The 1H NMR and 19F NMR spectra of the polymers were recorded on a Bruker AVANCE 400 spectrometer (400 MHz), using CDCl3 as a solvent. SEC measurements were performed using PL50 system equipped with a UV (254 nm) and a RI detector. Calibration was carried out using polystyrene standards provided by Polymer Laboratories. Seven polymer standards with various molar mass were used, 1260, 4920, 9920, 60450, 170 800, and 299 400 Da. Tetrahydrofuran (THF) was used as an eluent at 40°C at a flow rate of 1 mL/min.

2.3 Synthesis of PLina-g-PSty graft copolymers using TEMPO

The typical polymerization procedure was as follows: 0.50 g of PLina-ox and required amount of TEMPO were charged into a flame-dried Schlenk flask, fitted with a magnetic stirring bar. Then 2.78 g of styrene and 3 mL anisole as solvent were injected into a Schlenk flask by a syringe under argon atmosphere. The flask was placed into a preheated oil bath at 130°C. Other conditions are shown as follows: the feed ratio was [PLina-ox]:[TEMPO]:[Sty] = [1]:[1]:[100] and the reaction time was chosen as 4, 9, and 20 h. After the polymerization, the crude polymer was dissolved in chloroform and precipitated into excess of methanol. Finally, precipitated polymer was dried under vacuum at 40°C for 24 h.

2.4 Synthesis of PLina-g-PF5Sty graft copolymers using TEMPO

The typical polymerization procedure was as follows: 0.50 g of PLina-ox and required amount of TEMPO were charged into a flame-dried Schlenk flask, fitted with a magnetic
stirring bar. Then 1.51 g of styrene, 1.8 g pentafluorostyrene, and 6.30 mL anisole as solvent were injected into the Schlenk flask by a syringe under argon atmosphere. The flask was placed into a preheated oil bath at 130°C. Other conditions are shown as follows: the feed ratio was [PLina-ox]:[TEMPO]:[Sty]:[F5Sty] = [1]:[1]:[50]:[50] and the reaction time was chosen as 4, 8, 10, 20, 25, and 30 h. After the polymerization, the crude polymer was dissolved in chloroform and precipitated into excess of methanol. Finally, precipitated polymer was dried under vacuum at 40°C for 24 h.

2.5 Chain extension of PLina-g-PSty graft copolymers with styrene

The typical polymerization procedure was as follows: 0.50 g of PLina-g-PSt was charged into a flame-dried Schlenk flask fitted with a magnetic stirring bar. Then 1.73 g of styrene and 1.9 mL anisole as solvent was injected into the Schlenk flask by a syringe under argon atmosphere. The flask was placed into a preheated oil bath at 130°C. Chain extension reaction was carried out at various reaction times, such as 4, 8, 10, 20, and 25 h. The crude polymer was dissolved in chloroform and precipitated into excess of methanol. Finally, precipitated polymer was dried under vacuum at 40°C for 24 h.

3 Results and discussion

3.1 Synthesis of the macroperoxy initiator from linoleic acid

We have recently demonstrated the use of PLina-ox, macroperoxy initiator, in free radical polymerization of selected vinyl monomers [24, 30]. PLina-ox is valuable for incorporating hydrophobic and biodegradable oil sourced polymer into graft copolymer structures. PLina-ox has peroxide groups that can

Scheme 1. Reaction design of the polymerization of a) styrene or b) styrene and pentafluorostyrene initiated by the fatty acid macroperoxides in the presence of TEMPO.
be used to initiate the free radical polymerization of vinyl monomers. In this study, PLina-ox has been used in nitroxide-mediated radical polymerization of styrene and pentfluorostyrene to prepare PLina-g-PSt and PLina-g-PF₅St-g-PF₅St graft copolymers. PLina-ox, macroperoxy initiator, was autoxidized for 60 days and the molar mass was measured as 1450 Da (PDI = 1.41). Peroxogen content of the PLina-ox was found to be 0.9 wt%. Autoxidized linoleic acid acted as the macroperoxidic initiator in the polymerization of styrene and pentfluorostyrene.

3.2 Nitroxide-mediated radical controlled graft copolymerization

PLina-ox has peroxide groups that initiated free radical polymerization of styrene and pentfluorostyrene. Polymerization of styrene and pentfluorostyrene was initiated by PLina-ox initiator in the presence of TEMPO and controlled radical polymerization provided well-defined PLina-g-PSt and PLina-g-PF₅St-g-PF₅St graft copolymers. Scheme 1 shows the reaction design of Sty or Sty and F₅St polymerization initiated by macroperoxide, PLina-ox in the presence of TEMPO. This controlled graft copolymerization approach has been studied extensively by varying the polymerization time, Sty and F₅St concentration, chain extension as well as the PLina-ox macroperoxy initiator concentration. The obtained results are summarized in Tables 1–3. All obtained graft copolymers have been precipitated from CHCl₃ to methanol.

The effects of polymerization time on the graft copolymerization and homo polymerization by the application of controlled-free radical polymerization using TEMPO have been studied. Homo polymerization of styrene using TEMPO and nitroxide-mediated polymerization of styrene using PLina-ox and TEMPO have been carried out. The effects of the polymerization time on the graft and homo polymerization are presented in Table 1. Polymerization reaction is carried out at various times such as 4, 9, and 20 h.

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Time (h)</th>
<th>PSy (%)</th>
<th>Mₙ,GPC</th>
<th>Mₚ,GPC</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLinaSty-1</td>
<td>4</td>
<td>12.4</td>
<td>1460</td>
<td>1820</td>
<td>1.25</td>
</tr>
<tr>
<td>PLinaSty-2</td>
<td>9</td>
<td>24.4</td>
<td>5210</td>
<td>5770</td>
<td>1.11</td>
</tr>
<tr>
<td>PLinaSty-3</td>
<td>20</td>
<td>46.1</td>
<td>7420</td>
<td>9240</td>
<td>1.25</td>
</tr>
<tr>
<td>HSty-1</td>
<td>4</td>
<td>3.2</td>
<td>300</td>
<td>320</td>
<td>1.05</td>
</tr>
<tr>
<td>HSty-2</td>
<td>9</td>
<td>10.6</td>
<td>320</td>
<td>340</td>
<td>1.07</td>
</tr>
<tr>
<td>HSty-3</td>
<td>20</td>
<td>14.8</td>
<td>1110</td>
<td>1220</td>
<td>1.10</td>
</tr>
</tbody>
</table>

aAll polymerization were carried out in 50% (v/v) anisole with PLina-ox:0.5 g, Sty:2.78 g, and [PLina-ox]:[TEMPO]:[Sty]:[1]:[1]:[100] at 130°C.

bDetermined by ¹H NMR.

Figure 1. Variation of molecular weight (Mₙ) and polydispersity versus the polymerization time of PLina-g-PSty graft copolymer and homo polystyrene.

Weight percentages of each block in the structure of graft copolymers and homo polymers were determined from ¹H NMR. The amount of polystyrene in the graft copolymer has increased according to longer polymerization time. The percentages of the amount of PSy in graft copolymer is found to be 12.43% in PLinaSty-1, 24.35% in PLinaSty-2, and 46.11% in PLinaSty-3 while the percentages of the amount of PSy in homo polymer is found to be 3.17% in HSty-1, 10.58% in HSty-1, and 14.81% in HSty-1.

The plot of molecular weight (Mₙ) versus polymerization time is shown in Fig. 1. For polymerizations of longer periods, polymers of higher molecular weights are obtained. Longer polymerization times cause higher polymer yields. It can be said that graft copolymers were successfully synthesized using PLina-ox with TEMPO when we compare the molecular weights of graft copolymers and homo polymers. Mₙ of the PLina-g-PSty graft copolymers are changing between 1460 and 7420 Da while Mₙ of homo polymers are 300 and 1110 Da, respectively. Polymerization can also confirmed as a controlled polymerization when we take into account the low polydispersity indices, which are changing between 1.11 and 1.25.

The relationship between the monomer conversion and polymerization time has been shown in Fig. 2. It was found that the monomer conversion values have increased by extended reaction times as expected. The yield for PLina-g-PSty graft copolymer has been obtained as 13 and 45 wt% at 4 and 20 h reaction time, respectively. The monomer conversions of homo polymerizations were found to be quite low, 3 and 12%.

Figure 3 exhibits typical ¹H NMR spectrum of PLina-g-PSty (PLinaSty-2) graft copolymer sample. ¹H NMR spectra of the graft copolymer sample contained characteristic peaks of the related segments: (δ, ppm): 0.9 ppm (–CH₃ of fatty acid macroperoxide); (δ, ppm): 6.5–7.1 ppm (the phenyl protons in polystyrene). ¹H NMR was also used to determine the PLina-
ox and PSty contents in mol% by calculating the peak areas of the methyl protons in PLina-ox (0.9 ppm) and phenyl protons in polystyrene (6.5 – 7.2 ppm) (given in Table 1).

Polymerization reaction conditions and yields of PLina-g-PSty-g-PF5Sty are summarized in Table 2. Figure 4 shows molecular weight and polydispersity versus polymerization time. Molecular weight of graft copolymers measured by GPC technique varied from 1270 to 9140 Da. \(M_n \) and \(M_w \) values of graft copolymers increase with increasing polymerization time. Polydispersity indices of graft copolymers show a variation in the range of 1.08 – 1.57. Polymerization reaction is carried out at various times such as 4, 8, 10, 20, 25, and 30 h. Weight percentages of each block of PSty and PF5Sty in the structure of graft copolymers were also determined from 1H NMR. Figure 5 also shows monomer conversion percentages of tri block graft copolymers. Percentage values of PSty and PF5Sty in the graft copolymer have increased according to increased polymerization time. The percentage of the amount of PSty and PF5Sty in graft copolymer is found to be changing in the range of 2.82 – 49.27% and 4.16 – 49.27%, respectively.

Figure 6 exhibits typical 1H NMR spectrum of PLina-g-PF5Sty-g-PSty (PLinaStF5St-6) graft copolymer sample. 1H NMR spectra of the graft copolymer sample contained characteristic peaks of the related segments: \((d, ppm): 0.9 \text{ ppm} (–\text{CH}_3 \text{ of fatty acid macroperoxide}); (d, ppm): 6.5–7.1 \text{ ppm} (\text{the phenyl protons in polystyrene})\). Unfortunately, we could not observe the PF5Sty segment in graft copolymer using 1HNMR, because vinyl groups of Sty and F5Sty have separate peaks in 1HNMR.

Table 2. Reaction conditions and characterization of PLina-g-PSty-g-PF5Sty graft copolymers

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Time (h)</th>
<th>PF5Sty (%)</th>
<th>PSty (%)</th>
<th>(M_n) GPC</th>
<th>(M_w) GPC</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLinaStF5St-1</td>
<td>4</td>
<td>4.2</td>
<td>2.82</td>
<td>1270</td>
<td>1490</td>
<td>1.18</td>
</tr>
<tr>
<td>PLinaStF5St-2</td>
<td>8</td>
<td>11.1</td>
<td>9.86</td>
<td>4390</td>
<td>4730</td>
<td>1.08</td>
</tr>
<tr>
<td>PLinaStF5St-3</td>
<td>10</td>
<td>19.4</td>
<td>15.49</td>
<td>5960</td>
<td>6620</td>
<td>1.11</td>
</tr>
<tr>
<td>PLinaStF5St-4</td>
<td>20</td>
<td>38.9</td>
<td>36.62</td>
<td>7860</td>
<td>10030</td>
<td>1.28</td>
</tr>
<tr>
<td>PLinaStF5St-5</td>
<td>25</td>
<td>47.2</td>
<td>47.89</td>
<td>8750</td>
<td>11520</td>
<td>1.32</td>
</tr>
<tr>
<td>PLinaStF5St-6</td>
<td>30</td>
<td>49.3</td>
<td>49.27</td>
<td>9140</td>
<td>12400</td>
<td>1.36</td>
</tr>
</tbody>
</table>

\(^a\)All polymerizations were carried out in 70% (v/v) anisole with PLina-ox:0.5 g, F5Sty:1.8 g, Sty: 1.51 g, and [PLina-ox]:[TEMPO]:[Sty]:[F5PSty]=1:1:50:50 at 130°C. \(^b\)Determined by 1H NMR.
Figure 7 shows 1H NMR spectrum of PLina-g-PF$_5$Sty-g-PSty (PLinaStF$_5$St-2) graft copolymer which is taken directly from the Schlenk tube. This polymerization mixture contains polymer, Sty, and F$_5$Sty monomers. Thus, we could measure the percentages of the monomer conversion. We have also confirmed the successful synthesis of PLina-g-PF$_5$Sty-g-PSty graft copolymer as we have measured 19F NMR of PLinaStF$_5$St-6 sample. Figure 8 shows the 19F NMR spectrum of PLina-g-PSty-g-PF$_5$PS graft copolymer (PLinaStF$_5$St-6). In this spectrum, we have observed tri peaks of fluoride corresponding for orto-, meta-, and para- positions. 19F NMR spectra of the graft copolymer sample (PLinaStF$_5$St-6) contained characteristic peaks of the related segments: (δ, ppm): −142 ppm (orto-flouride), −158 ppm (meta-flouride), and −164 ppm (para-flouride) [32, 34].
To understand the NMRP system we have further studied chain extension of PLina-PSty graft copolymer. Chain extension reaction conditions are shown in Table 3. The SEC profile of chain extension of PLina-g-PSty graft copolymers with styrene is shown in Fig. 9. Figure 10 shows molecular weight and polydispersity versus polymerization time. Chain extension reaction was carried out at various times such as 4, 8, 10, 20, and 25 h. Molecular weight of graft copolymers measured by GPC technique varied from 7420 to 16080 Da. M_n and M_w values of graft copolymers increase with increasing polymerization time. Polydispersities of graft copolymers show a variation in the range of 1.25–1.62.

Figure 11 exhibits typical 1H NMR spectrum of chain extended PLina-g-(PSty)$_n$ (PLina(PSt)$_n$-5) graft copolymer sample. 1H NMR spectra of the graft copolymer sample contained characteristic peaks of the related segments: (δ, ppm): 0.9 ppm (–CH$_3$ of fatty acid macroperoxide); (δ, ppm): 6.5–7.1 ppm (the phenyl protons in polystyrene). When Fig. 11 and Fig. 3 are compared with each other their integrations are particularly different. It is seen that PSty integration of chain extended polymer has been increased particularly.

4 Conclusions

In conclusion, we have demonstrated for the first time the synthesis of PLina-g-PSty and PLina-g-PSty-g-PF$_5$Sty graft copolymers in the presence of TEMPO and their chain extension. Pure linoleic acid was auto-oxidized under

Table 3. Reaction conditions chain extended PLina-g-(PSty)$_n$ graft copolymers

<table>
<thead>
<tr>
<th>Run No.a</th>
<th>Time (h)</th>
<th>M_n,GPC</th>
<th>M_w,GPC</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLina(PSt)$_n$-0</td>
<td>0</td>
<td>7420</td>
<td>9240</td>
<td>1.25</td>
</tr>
<tr>
<td>PLina(PSt)$_n$-1</td>
<td>4</td>
<td>7700</td>
<td>10810</td>
<td>1.40</td>
</tr>
<tr>
<td>PLina(PSt)$_n$-2</td>
<td>8</td>
<td>12280</td>
<td>17260</td>
<td>1.41</td>
</tr>
<tr>
<td>PLina(PSt)$_n$-3</td>
<td>10</td>
<td>13920</td>
<td>21380</td>
<td>1.53</td>
</tr>
<tr>
<td>PLina(PSt)$_n$-4</td>
<td>20</td>
<td>15690</td>
<td>25380</td>
<td>1.62</td>
</tr>
<tr>
<td>PLina(PSt)$_n$-5</td>
<td>25</td>
<td>16080</td>
<td>25640</td>
<td>1.59</td>
</tr>
</tbody>
</table>

aAll polymerization were carried out in 50% (v/v) anisole with PLina-g-PSty:0.5 g and Sty:1.73 g at 130°C.
daylight and air oxygen, yielding peroxidized PLina (PLina-ox). PLina-ox has been used for the polymerization of Sty or Sty and F2Sty in the presence of TEMPO. The NMRP method has been utilized in order to obtain PLina-g-PSty and PLina-g-PF2Sty-g-PSty graft copolymers with controlled structure and low polydispersity. Chain-extension reactions were also successfully carried out because of the activation of TEMPO-terminated chain ends of graft copolymers. Higher molecular weights of samples were obtained.

This work was supported financially by Bülent Ecevit University Research Fund (#BEU-2012-10-03-13), Düzce University Research Fund (grants numbers: 2014.05.03.234, 2014.05.03.248) and Turkish Scientific Research Council, TÜBİTAK, (grants numbers: 211T016, 110T884).

The authors have declared no conflicts of interest.

References

